On Orthogonal and Symplectic Matrix Ensembles Associated with a Class of Weight Functions
نویسنده
چکیده
For the unitary ensembles of N × N Hermitian matrices associated with a weight function w there is a kernel, expressible in terms of the polynomials orthogonal with respect to the weight function, which plays an important role. For example the n-point correlation function and the spacing probabilities have nice representations in terms of this kernel. For the orthogonal and symplectic ensembles of Hermitian matrices there are 2×2 matrix kernels, usually constructed using skew-orthogonal polynomials, which play an analogous role. These matrix kernels are determined by their upper left-hand entries. We show here that whenever w/w is a rational function these entries are equal to the scalar kernel for the corresponding unitary ensemble (but with w replaced by w2 for orthogonal ensembles and N replaced by 2N for symplectic ensembles) plus some “extra” terms whose number equals the order of w/w. General formulas are obtained for these extra terms. We do not use skew-orthogonal polynomials in the derivation.
منابع مشابه
ar X iv : s ol v - in t / 9 90 70 08 v 2 2 9 Se p 19 99 Inter - relationships between orthogonal , unitary and symplectic matrix ensembles
We consider the following problem: When do alternate eigenvalues taken from a matrix ensemble themselves form a matrix ensemble? More precisely, we classify all weight functions for which alternate eigenvalues from the corresponding orthogonal ensemble form a symplectic ensemble, and similarly classify those weights for which alternate eigenvalues from a union of two orthogonal ensembles forms ...
متن کاملOn the Relation Between Orthogonal, Symplectic and Unitary Matrix Ensembles
For the unitary ensembles of N × N Hermitian matrices associated with a weight function w there is a kernel, expressible in terms of the polynomials orthogonal with respect to the weight function, which plays an important role. For the orthogonal and symplectic ensembles of Hermitian matrices there are 2 × 2 matrix kernels, usually constructed using skew-orthogonal polynomials, which play an an...
متن کاملCorrelations for superpositions and decimations of Laguerre and Jacobi orthogonal matrix ensembles with a parameter
A superposition of a matrix ensemble refers to the ensemble constructed from two independent copies of the original, while a decimation refers to the formation of a new ensemble by observing only every second eigenvalue. In the cases of the classical matrix ensembles with orthogonal symmetry, it is known that forming superpositions and decimations gives rise to classical matrix ensembles with u...
متن کاملHans - Jürgen Sommers February 2 , 2008
We give a constructive proof for the superbosonization formula for invariant random matrix ensembles, which is the supersymmetry analog of the theory of Wishart matrices. Formulas are given for unitary, orthogonal and symplectic symmetry, but worked out explicitly only for the orthogonal case. The method promises to become a powerful tool for investigating the universality of spectral correlati...
متن کاملSuperbosonization *
We give a constructive proof for the superbosonization formula for invariant random matrix ensembles, which is the supersymmetry analog of the theory of Wishart matrices. Formulas are given for unitary, orthogonal and symplectic symmetry, but worked out explicitly only for the orthogonal case. The method promises to become a powerful tool for investigating the universality of spectral correlati...
متن کامل